Test Results

For testing our implementation we used spheres and a ground
plane as the scene geometry which both can be checked for
intersection in constant time. The geometry is stored in arrays on
the GPU without any spatial data structure so the number of
operations per pixel isO(m + n +s(m+n)) where s is the number
of random samples, m is the number of spheres, and n is the
number of planes. Each pixel ray must check for intersection with
every scene object (m + n), and if so, send s sample rays that also
check for intersection with every scene object.

The following results were from running our code on a single GPU
node with the following specifications: Dual Octocore Intel Xeon
2.4 GHz, 64GB Memory, Dual k20 NVIDIA. For CPU comparison,
we also ran a modified single threaded C++ version to run on an
Intel Q6600 @ 2.6 Ghz.

Samples, 15 Constant Memory| Global Memory Run Q6600 - single
Spheres Run Time (ms) Time (ms) threaded (ms)

100 812 4,155 46,925

250 1,686 9,951 114,988

500 3,143 19,641 ?

1,000 6,040 39,237 ?

Table 1 - Average runtime in milliseconds of ambient occlusion on GPU
and CPU, with different number of samples for ambient occlusion.

Spheres, 250 Constant Memory| Global Memory Run Q6600 - single
Samples Run Time (ms) Time (ms) threaded (ms)

5 725 5,183 58,766

15 1,685 9,950 114,987

50 4,792 28,747 ?

100 9,155 52,935 ?

Table 2 - Average runtime in milliseconds of ambient occlusion on GPU
and CPU, with different number of spheres in the scene.

These results clearly demonstrate the performance benefit of using
constant memory where possible. For handling large scenes and
polygonal geometry, a spatial data structure such as a KD-Tree
would greatly reduce the complexity of the algorithm.

Increasing the number of samples reduces the noise of the random
algorithm. However, 100-200 samples is usually good enough for
an ambient occlusion render pass, as the difference between 200
and 1000 samples is a small blur filter which can easily be done in
post-production software. Figures 4 - 6 show the outputs of
different sample amounts.

Conclusion

Our code is not fully optimized, lacks a spatial data structure, and
could benefit from experimenting with block/grid size. Nevertheless,
these tests provide insight into the relative speeds of the different
memory types and also the strong computing power of the GPU.

A,

Fig. 5 - 100 samples per pixel

Fig. 6 - 1000 samples per pixel

40000

35000

30000

25000 -

20000 -

Runtime in ms

15000

10000 -

5000 -

I I
constant memory version
global memory version

pS

Plot 1 - Runtime for fixed number of spheres in the scene and different

number of samples.

400 600 800

Number of samples taken for ambient occlusion

1000

1200

60000 T

I coﬂstant memory éersion bd
global memory version

50000 - =

40000 -
12}
E
o
B
g 30000 - -
-~
1
=]
=
9

20000 - =

10000) B B¢ 7

S
0 % | I | I 1
0 20 40 60 80 100

Number of spheres in the scene

Plot 2 - Runtime for fixed number of samples and different number of

spheres in the scene.

Given fixed number of spheres, the run time of ambient occlusion with different numbers of

samples taken.

